I am creating grayscale, single channel geotiff files from numpy arrays with the below module, but I would like to apply a fairly standard colormap to the data. I've tried three channels of R,B and G and have had no success if producing anything that looks correct. I'm thinking my approach, in general is flawed.
How can I go from grayscale to color geotiffs?
def geotiff_output(outfile, mag_grid, lons, lats):
#*********************Test***************************
from osgeo import gdal, osr, ogr
xres = lons[1] - lons[0]
yres = lats[1] - lats[0]
ysize = len(lats)
xsize = len(lons)
ulx = lons[0] - (xres / 2.)
uly = lats[-1] - (yres / 2.)
driver = gdal.GetDriverByName('GTiff')
ds = driver.Create(sc_settings.dynamic_folder_script + outfile[:-4] + ".tif",
xsize, ysize, 1, gdal.GDT_Byte, )
# this assumes the projection is Geographic lat/lon WGS 84
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)
ds.SetProjection(srs.ExportToWkt())
gt = [ulx, xres, 0, uly, 0, yres ]
ds.SetGeoTransform(gt)
outband=ds.GetRasterBand(1)
#mask no data points...
mag_grid1 = np.ma.masked_where(mag_grid==-99.,mag_grid)
#assign actual data values for inclusion in metadata
outband.SetStatistics(np.round(np.min(mag_grid1),decimals=4),
np.round(np.max(mag_grid1),decimals=4),
np.round(np.mean(mag_grid1),decimals=4),
np.round(np.std(mag_grid1),decimals=4))
#normalize the array to a 0-255 scale
if np.min(mag_grid1) < 0:
mag_grid1 = mag_grid1 + np.abs(np.min(mag_grid1))
#Normalize array to a 0-255 scale for raster channel
mag_grid2 = ((mag_grid1 - np.min(mag_grid1))/(np.max(mag_grid1) - np.min(mag_grid1)))*256
outband.WriteArray(mag_grid2)
ds = None
No comments:
Post a Comment