I'm looking for some code, ideally C#, to convert a WGS84 coordinate to British National Grid Easting and Northings.
Does anyone have this to hand?
I tried converting the Javascript code here:
http://www.movable-type.co.uk/scripts/latlong-gridref.html
to C# - but the code doesn't seem to give the correct coordinates for easting and northings - see below:
public void LatLongToEastNorth(double latitude, double longitude)
{
latitude = toRad(latitude);
longitude = toRad(longitude);
double a = 6377563.396, b = 6356256.910; // Airy 1830 major & minor semi-axes
double F0 = 0.9996012717; // NatGrid scale factor on central meridian
double lat0 = toRad(49);
double lon0 = toRad(-2); // NatGrid true origin
double N0 = -100000, E0 = 400000; // northing & easting of true origin, metres
double e2 = 1 - (b * b) / (a * a); // eccentricity squared
double n = (a - b) / (a + b), n2 = n * n, n3 = n * n * n;
double cosLat = Math.Cos(latitude), sinLat = Math.Sin(latitude);
double nu = a * F0 / Math.Sqrt(1 - e2 * sinLat * sinLat) ; // transverse radius of curvature
double rho = a * F0 * (1 - e2) / Math.Pow(1 - e2 * sinLat * sinLat, 1.5); // meridional radius of curvature
double eta2 = nu / rho - 1;
double Ma = (1 + n + (5 / 4) * n2 + (5 / 4) * n3) * (latitude - lat0);
double Mb = (3 * n + 3 * n * n + (21 / 8) * n3) * Math.Sin(latitude - lat0) * Math.Cos(latitude + lat0);
double Mc = ((15 / 8) * n2 + (15 / 8) * n3) * Math.Sin(2 * (latitude - lat0)) * Math.Cos(2 * (latitude + lat0));
double Md = (35 / 24) * n3 * Math.Sin(3 * (latitude - lat0)) * Math.Cos(3 * (latitude + lat0));
double M = b * F0 * (Ma - Mb + Mc - Md); // meridional arc
double cos3lat = cosLat * cosLat * cosLat;
double cos5lat = cos3lat * cosLat * cosLat;
double tan2lat = Math.Tan(latitude) * Math.Tan(latitude);
double tan4lat = tan2lat * tan2lat;
double I = M + N0;
double II = (nu / 2) * sinLat * cosLat;
double III = (nu / 24) * sinLat * cos3lat * (5 - tan2lat + 9 * eta2);
double IIIA = (nu / 720) * sinLat * cos5lat * (61 - 58 * tan2lat + tan4lat);
double IV = nu * cosLat;
double V = (nu / 6) * cos3lat * (nu / rho - tan2lat);
double VI = (nu / 120) * cos5lat * (5 - 18 * tan2lat + tan4lat + 14 * eta2 - 58 * tan2lat * eta2);
double dLon = longitude - lon0;
double dLon2 = dLon * dLon, dLon3 = dLon2 * dLon, dLon4 = dLon3 * dLon, dLon5 = dLon4 * dLon, dLon6 = dLon5 * dLon;
double N = I + II * dLon2 + III * dLon4 + IIIA * dLon6;
double E = E0 + IV * dLon + V * dLon3 + VI * dLon5;
//return gridrefNumToLet(E, N, 8);
}
Answer
I was being a bit dumb actually - I must have put through the wrong long and lat values - the code does actually work. But you may want to consider what mkennedy put about datums WGS84 and the Airy 1830 - this will have some effect on the accuracy of your final easting and northing readings - myabe 60-100m out, so it all depends on how accurate you want it to be.
No comments:
Post a Comment